
Programming with MPI
Pedro Velho  

Science
Research 

Challenges 

Some applications require tremendous computing power
! - Stress the limits of computing power and storage !

- Who might be interested in those applications? !
- Simulation and analysis in modern science or e-Science

Example LHC
Large Hadron

Collider (CERN)

LHC Computing Grid
!
Worldwide collaboration with more than
170 computing centers in 34 countries
!
A lot of data to store: 1 GByte/sec
!
Need high computing power to obtain
results in feasible time

How can we achieve this goal?

Old school high
performance

computing

• Sit and wait for a new processor !
– Wait until CPU speed doubles !
– Speed for free !

• Don’t need to recompile or rethink the code !
• Don’t need to pay a computer scientist to do the job

Unfortunately this is not true anymore...

The need for HPC

Moore’s Law (is it true or not?)
- Moore said in 1965 that the number of
transistors will double approximately
every 18 months
- But, it’s wrong to think that if the number
of transistors doubles then processors
run two times faster every 18 months
- Clock speed and transistor density
are not co-related!

Can I buy a 20GHz processor today?

Single processor
is not enough

!
– Curiously Moore’s law is still true

• Number of transistor still doubles every 18 months

– However there are other factors that limit CPU clock speed:
• Heating
• Power consumption
!

– Super computers are too expensive for medium size problems
!

!
The solution is to use distributed computing!

Distributed
Computing

- Cluster of workstations
• Commodity PCs (nodes) interconnected through a local network
• Affordable
• Medium scale
• Very popular among researchers
!

- Grid computing
• Several cluster interconnected through a wide area network
• Allows resource sharing (less expensive for universities)
• Huge scale

This is the case of GridRS!

Distributed
Programming

- Applications must be rewritten

• No shared memory between nodes (processes need to communicate)

• Data exchange through network
- Possible solutions

• Ad Hoc: Work only for the platform it was designed for

• Programming models:
 Ease data exchange and process identification
 Portable solution
 Examples: MPI, PVM, Charm++

Message Passing
Interface (MPI)

- It is a programming model

• Not a specific implementation or product
• Describes the interface and basic functionalities

- Scalable
• Must handle multiple machines

- Portable
• Socket API may change from one OS to another

- Efficient
• Optimized communication algorithms

MPI Programming

- MPI implementations (all free):

• OpenMPI (GridRS)
http://www.open-mpi.org/
!

• MPICH
http://www.mpich.org

!
• LAM/MPI

http://www.lam-mpi.org/

http://www.open-mpi.org
http://www.mcs.anl.gov/research/projects/mpich2/

- MPI References
• Books

MPI: The Complete Reference, by Snir, Otto, Huss-
Lederman, Walker, and Dongarra, MIT Press, 1996. !
Parallel Programming with MPI, by Peter Pacheco, Morgan
Kaufmann, 1997.

• The standard:

http://www.mpi-forum.org

MPI Programming

http://www.mpi-forum.org

– SPMD model: Single Program Multiple Data
• All processes execute the “same source code”
• But, we can define specific blocks of code to be executed by
specific processes (if-else statements)

– MPI offers:
• A way of identifying processes
• Abstraction of low-level communication
• Optimized communication

– MPI doesn't offer:
• Performance gains for free
• Automatic transformation of a sequential to a parallel code

MPI Programming

Possible way of parallelizing an application with MPI:

Start from
sequential version

Choose a
parallel strategy

Split the application
in tasks

Implement with MPI

MPI Programming

Some parallel strategies

• Master/Slave

• Pipeline

• Divide and Conquer

Parallel
Strategies

Master/Slave

- Master is one process that centralizes all tasks
- Slaves request tasks when needed

- Master sends tasks on demand

MasterSlave 1 Slave 2

Request Request
Task 1 Task 2

Result 2
Finish

Result 1
Finish

Master/Slave
- Master is often the bottleneck
- Scalability is limited due to centralization
- Possible to use replication to improve performance

- Good for heterogenous platforms

Parallel
Strategies

Pipeline

- Each process plays a specific role (pipeline stage)
- Data follows in a single direction
- Parallelism is achieved when the pipeline is full

Tim
e

Task 1
Task 2
Task 3
Task 4

Parallel
Strategies

Pipeline

- Scalability is limited by the number of stages
- Synchronization may lead to “bubbles”

Example: slow sender and fast receiver
- Difficult to use on heterogenous platforms

Parallel
Strategies

Divide and Conquer
- Recursively “breaks” tasks into smaller tasks
- Or process the task if it is “small enought” Work(60)

Work(40)

Work(20)Work(20)

Work(20)

Result(20)Result(20)

Result(40)

Result(20)

Result(60)

Parallel
Strategies

Divide and Conquer

- More scalable
- Possible to use replicated branches
- In practice it may be difficult to “break” tasks
- Suitable for branch and bound algorithms

Parallel
Strategies

1) Log in for the first time on GridRS

- $ ssh user@gridrs.lad.pucrs.br

2) Configure the SSH and OpenMPI environment on GridRS

- https://bitbucket.org/schnorr/gridrs/wiki

Hands-on
GridRS

https://bitbucket.org/schnorr/gridrs/wiki/Run_a_Local_experiment

#include	
 <mpi.h>
#include	
 <stdio.h> !
int	
 main(int	
 argc,	
 char	
 **argv){	
 	

	
 /*	
 A	
 local	
 variable	
 to	
 store	
 the	
 hostname	
 */	

	
 char	
 hostname[1024];	

	
 	

	
 /*	
 Initialize	
 MPI	
 */	

	
 MPI_Init(&argc,	
 &argv);	

	
 	

	
 /*	
 Discover	
 the	
 hostname	
 */	

	
 gethostname(hostname,	
 1023);	

	
 	

	
 printf(“Hello	
 World	
 from	
 %s\n”,	
 hostname);	

	
 	

	
 /*	
 Finalize	
 MPI	
 */	

	
 return	
 MPI_Finalize();	

}

Exercise 0: Hello World

MPI Programming

Write the following hello
world program in your
home directory.
!
Compile the source code
on the frontend:

$ mpicc my_source.c -o
my_binary

MPI Programming

Configure GridRS environment, compile and run your app:

- https://bitbucket.org/schnorr/gridrs/wiki/Run_a_Local_experiment

Use timesharing while allocating resources:

- $ oarsub -l nodes=3 -t timesharing -I

Running with “X” processes (you can choose the nb. of processes)
- $	
 mpirun	
 -­‐-­‐mca	
 btl	
 tcp,self	
 -­‐np	
 X	
 -­‐-­‐machinefile	
 $OAR_FILE_NODES	
 ./my_binary

https://bitbucket.org/schnorr/gridrs/wiki/Run_a_Local_experiment

How many processing units are available?
int	
 MPI_Comm_size(MPI_Comm	
 comm,	
 int	
 *psize)
– comm

– Communicator: used to group processes
– For grouping all processes together use MPI_COMM_WORLD

– psize
– Returns the total amount of processes in this communicator

MPI Programming

int	
 size;
MPI_Comm_size(MPI_COMM_WORLD,	
 &size);Example:

Exercise 1

- Create a program that prints hello world and the total
number of available process on the screen

- Try several processes configurations with –np to see if your
program is working

MPI Programming

Assigning Process Roles
int	
 MPI_Comm_rank(MPI_Comm	
 comm,	
 int	
 *rank)

– comm
– Communicator: specifies the process that can communicate
– For grouping all processes together use MPI_COMM_WORLD

– rank
– Returns the unique ID of the calling process in this communicator

MPI Programming

int	
 rank;
MPI_Comm_rank(MPI_COMM_WORLD,	
 &rank);Example:

Exercise 2

- Create a program that prints hello world, the total number of
available process and the process rank on the screen

- Try several processes configurations with –np to see if your
program is working

MPI Programming

Exercise 3 – Master/Slave

!
if “I am process 0” then

Print: “I’m the master!”

else

Print: “I’m slave <ID> of <SIZE>!”, replacing “ID” by the
process rank and SIZE by the number of processes.

MPI Programming

Sending messages (synchronous)
– Receiver waits for message to arrive (blocking)
– Sender unblocks receiver when the message arrives

Proc 1 Proc 2

MPI_Recv()

Blocked until
message arrives

Tim
e

MPI_Send()

MPI Programming

receiver is unblocked when
the message arrives

Sending messages (synchronous)
int	
 MPI_Send(void	
 *buf,	
 int	
 count,	
 MPI_Datatype	
 dtype,	

	
 	
 	
 	
 	
 	
 	
 int	
 dest,	
 int	
 tag,	
 MPI_Comm	
 comm)

– buf: pointer to the data to be sent
– count: number of data elements in buf
–	
 dtype: type of elements in buf
– dest: rank of the destination process
– tag: a number to “classify” the message (optional)
– comm: communicator

MPI Programming

Receiving messages (synchronous)
int	
 MPI_Recv(void	
 *buf,	
 int	
 count,	
 MPI_Datatype	
 dtype,	

	
 int	
 src,	
 int	
 tag,	
 MPI_Comm	
 comm,	
 MPI_Status	
 *status)

– buf: pointer to where data will be stored
– count: maximum number of elements that buf can handle
–	
 dtype:type of elements in buf
– src: rank of sender process (use MPI_ANY_SOURCE to
receive from any source)
– tag: message tag (use MPI_ANY_TAG to receive any
message)
– comm: communicator
–	
 status: information about the received message, if desired
can be ignored using MPI_STATUS_IGNORE

MPI Programming

Exercise 4 – Master/Slave with messages

- Master receives one message per slave

- Slaves send a single message to the master with their rank

- When the master receives a message, it prints the received rank

MPI Programming

• Exercise 5 – Computing π by Monte Carlo Method

2

1

1

Area of Circle =
 π r 2 = π (1) 2 = π

A =
π
4

P(I) = A =
π
4

MPI Programming

Asynchronous/Non-blocking messages
– Process signs it is waiting for a message
– Continue working meanwhile
– Receiver can check any time if the message is arrived

Proc 1 Proc 2
MPI_Irecv()

Tim
e

MPI_Isend()

MPI Programming

other computation

receiver doesn’t block!

receiver checks if a message is
arrived so it can use it: MPI_Wait()

Master wants to send a message to everybody
– First solution, master sends N-1 messages
– Optimized collective communication: send is done in parallel

Tim
e

Send(1)

Send(2)

Send(3)

Tim
e

Send(1)

Send(2) Send(3)
Constant
time to send
a message

Broadcast
completed in
3 slices of
time

Finishes in
2 slices of
time

Master Proc 1 Proc 2 Proc 3 Master Proc 1 Proc 2 Proc 3

MPI Programming

